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Abstract. We demonstrate, both from a theoretical and an experimental point of view, the possibility
of realizing a weak coupling between two Bose-Einstein condensates trapped in different Zeeman states.
The weak coupling drives macroscopic quantum oscillations between the condensate populations and the
observed current-phase dynamics is described by generalized Josephson equations. In order to highlight
the superfluid nature of the oscillations, we investigate the response of a 87Rb non-condensate (thermal)
gas in the same conditions, showing that the thermal oscillations damp more quickly than those of the
condensate.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena – 05.30.Jp Boson
systems

The Josephson effect

The manifestation of phase coherence on macroscopic
scales is among the most spectacular phenomena occur-
ring in superfluids and superconductors [1]. According to
quantum mechanics, only the relative phase between two
of such quantum systems is observable, while the phase
of a single one is not. If a weak link is created between
two quantum fluids, as a small perturbation on the un-
coupled systems, a particle current driven by the relative
phase oscillates through the junction, providing a non-
destructive test of phase coherence. This is at the heart
of the Josephson effect (JE), predicted in the sixties [2],
and verified experimentally with superconductors [3], su-
perfluid helium [4,5] and arrays of BECs [6,7].

From the historical point of view, the first weak link
achieved was a tunneling barrier between two supercon-
ducting systems. Soon after, it was realized that tunnel-
ing was just one way among others to create a weak link,
and “contact junctions” (with the two superconducting
systems sharing a small area) were implemented [3]. In
neutral superfluids, the search for the JE has been prob-
lematic due to the difficulty of creating weak links. Evi-
dences for Josephson oscillations across a micropore con-
necting two 3He-B baths were reported by Avenel and
Varoquaux [4] and their first direct observation has been
recently reported by Davis, Packard and collaborators [5].
The weak link was provided by the spatial overlap of the
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two superfluid wavefunction tails inside the micropore.
For BECs, multiple connected weak links have been real-
ized with optical lattices: by using two counterpropagating
lasers, a periodic potential acts on the atomic gas and a
chain of weakly coupled BECs (i.e. an array of Josephson
junctions) is created. Each junction is given by the con-
densates in neighbouring minima of the lattice potential,
the weak link between them being provided by the energy
barrier which is proportional to the laser power. Coher-
ence between atomic waves tunneling from an array of
weakly coupled BECs located at different heights in the
earth’s gravitational field, has been shown by Anderson
and Kasevich [6]; a direct observation of the Josephson
current in the array is reported in [7].

Up to date, the direct observation of a Josephson cur-
rent between only two BECs has been more elusive. A
possible way to create a junction is to divide an harmonic
magnetic trap in two halves using a laser “chisel”, cre-
ating an effective double well. However, the experimental
difficulties associated with the stability and the spatial
dimensions of the laser beam make this task difficult [8].
A further possibility is to consider two different internal
hyperfine states: in this case the Josephson atomic cur-
rent is between different spin states. It is rather common,
in the literature, to refer to the latter case as the “inter-
nal” JE. In the “internal” JE the states which are weakly
coupled differ by some intrinsic (spin) quantum number,
and they are not necessarily separated spatially (as in the
double well). An example of internal JE is the longitudinal
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magnetic resonance in superfluid 3He−A [9]; in this case
the relevant degree of freedom is the hyperfine (nuclear
spin) index of a Cooper pair [10].

Josephson vs. Rabi

The crucial step to observe the Josephson effect is to
create a weak link between two condensates. The JE is
a non-destructive manifestation of phase coherence in a
(macroscopic) quantum fluid. The idea is to couple the
two fluids, and then inquire about their (if any) relative
phase, without (and this is the crux) perturbing the bulk
properties of the two systems. Of course, this implies that
the energy scale of the coupling probe must be small as
compared with the chemical potential of both fluids. The
Rabi effect (RE), on the other hand, regards the manifes-
tation of coherence between internal states in the single
atom dynamics. In this respect the RE is a manifesta-
tion of quantum effects on a microscopic (atomic) scale.
These quantum effects can be easily washed out by the
incoherent collisions and other dephasing mechanisms in
a gas of interacting atoms. Quite the contrary, the collec-
tive coherence of a condensate is expected to be naturally
robust for the same reason, i.e. because of the interatomic
interaction. As it is well known, the superfluid nature of
the condensate can be related with the low energy exci-
tation spectrum of the system, which is linear instead of
quadratic, see for instance [1].

In this paper we suggest a scheme to create a weak
link between two condensates trapped in different hyper-
fine levels and we report on its experimental realization.
The weak link is provided by a strongly detuned radio-
frequency (rf) field which couples the two spin states.

The experiment

A dilute gas of 87Rb atoms is trapped and cooled be-
low the critical temperature for Bose-Einstein condensa-
tion [11], Tc � 150 nK, with a combination of laser and
evaporative cooling. The atoms are confined by dc mag-
netic fields generated by a set of four coils, arranged so
as to create an axially symmetric harmonic potential [12].
A single condensate in the Zeeman state |F = 2,mF =
2〉 ≡ |2〉 is created first. Subsequently, we apply a first
strong (and very short) rf field to create a second con-
densate in the Zeeman state |F = 2,mF = 1〉 ≡ |1〉
(there is a small transfer of population into the other
three accessible Zeeman levels that can be neglected in
the dynamics of the system). The two equally populated
condensates are fully overlapped in space. This gives our
initial (t = 0) configuration. Having different magnetic
momenta, the atoms of the two species feel different trap-
ping potentials V2 = 1

2mω
2{x2 + l2(y2 + z2)} +mgz and

V1 = 1
4mω

2{x2+l2(y2+z2)}+mgz (with ω = 2π×12.6 Hz,
l = 10.37 the ratio between the axial and radial trap fre-
quency, m the atomic mass and g the gravity acceleration
constant). Therefore, they begin to separate from each
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Fig. 1. Potentials (in unity of �ωl) felt by the two condensates
along the z-axis, in which the motion effectively occurs. Ini-
tially the two condensates are completely overlapped (in the
figure, the density profiles are slightly shifted and magnified
for graphical clarity). The complete oscillations of the conden-
sate |1〉 around its center have a period of order 10 ms: in the
typical time scale of the experiment (≈ 100 µs), |1〉 moves at
most of 0.02 µm and the two condensates remain essentially
overlapped.

other, each one following its own potential. In Figure 1
we report these potentials along the z-direction, in which
the motion of the condensates effectively occurs: the cen-
ters of the two potentials are separated by approximately
15 µm (which is a large amount respect to the width of the
condensates, 4.3 µm). In ≈ 500 µs the two condensates
would get completely separated, but in the typical time
scale of our experiment (≈ 100 µs), they are still almost
completely overlapped and the motion of |1〉 is basically
ballistic: in the typical time scale of the experiment |1〉
moves apart along the vertical z-axis at most by 0.02µm.
The two condensates then remain essentially overlapped
and with no change in shape.

While the condensate |1〉 begins to move, in order to
create the weak link between the two Zeeman states we
turn on an external rf field �ΩReiωrf t with detuning δ =
ωrf − ω0 (ω0 ≈ 2π · 2 MHz is the energy shift between
the two Zeeman states in the minimum of the magnetic
trap). The order parameters ψj(r, t) for the condensate j
(j = 1, 2) obey, in the rotating wave approximation, a set
of two-coupled Gross-Pitaevskii equations [13,14]:

i�
(
ψ̇2

ψ̇1

)
=

(
Ĥ2 − �δ/2 �ΩR/2

�ΩR/2 Ĥ1 + �δ/2

) (
ψ2

ψ1

)
(1)

where Hi = − �
2

2m∇2 +Vi+HMF
i . The mean-field interac-

tion for each component is described by HMF
i = gii|ψi|2+

gij |ψj |2 and it is characterized by gij = 4π�
2aij/m, which

depends on the scattering length aij of the collision (there
are three different values: a11, a22, a12). The scattering
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lengths are almost degenerate and the effective mean-field
contribution to the chemical potential difference between
the two condensates is of the order of 50 Hz.

The weak link

In [13] it has been suggested that a weak link can be
created with δ = 0 and ΩR smaller than the shift be-
tween the trap energy levels (for typical values, it has to
be ΩR ∼ 2π × 10 Hz). In this regime, the frequency of
the oscillations is modified by the nonlinearity of GPE.
However, the attempts to create such weak links are heav-
ily obstructed because, for technical reasons, with such a
small value of ΩR the ratio signal/noise is too small to
allow observing the Josephson oscillations. With a Rabi
frequency ΩR � 0.5 kHz, the mean-field contribution is
negligible in the coupled dynamics.

Here we choose an alternative way to create the weak
link: the detuning δ of the coupling external rf field is
taken to be � ΩR. This is crucial in the present ex-
periment: expanding the wave functions in the param-
eter ΩR/2δ, the standard first order perturbation the-
ory [15] correctly applies when this parameter is � 1.

The GPE (1) can be written in the form i�
(
ψ̇2

ψ̇1

)
=

(Ĥ0 + Ŵ )
(
ψ2

ψ1

)
where Ĥ0 =

(
Ĥ2 0
0 Ĥ1

)
and Ŵ =

�δ
2

( −1 ΩR/δ
ΩR/δ 1

)
. If we neglect the mean-field term in

the dynamics, as previously discussed, the Hamiltonians
of the uncoupled systems (i.e. without the external e.m.
field) are Ĥ2 = − �

2

2m∇2 + V2 and Ĥ1 = − �
2

2m∇2 + V1.

A basis for Ĥ0 is given by
{(

ψ2n

0

)
,

(
0

ψ1m

)}
with

Ĥ2ψ2n = E2nψ2n and Ĥ1ψ1m = E1mψ1m. Applying the
standard first order perturbation theory, we see that the

correction to, for instance, the wavefunctions
(
ψ2n

0

)
is

given by 
 0

∑
m
ΩR

�
drψ2mψ1n

2(E2m−E1n+δ)ψ2m




from which we can see the standard first order perturba-
tion theory correctly applies when ΩR/2δ � 1: in this
condition, the external rf field is a weak link. We use in
the experiment ΩR = 2π × 13 kHz and δ = 2π × 80 kHz.

We notice that the dynamical regimes of weakly linked
superfluids are often classified in the literature as [10]: 1)
“Rabi” (for K/EJ � N−2), 2) “Josephson” (for N−2 �
K/EJ � 1), 3) “Fock” (for K/EJ � 1). N is the num-
ber of particles, EJ = N�ΩR is the Josephson energy
of the junction and K = 4π�

2

m (g11 + g22 − 2g12)χ, where
χ =

∫
drΦ(r)4 and Φ(r) is the equilibrium condensate

wavefunction. According to this classification we are in
the “Rabi” case.

The Josephson equations

Since in the far-detuned regime the external field is a
weak link, the condensates dynamics can be described in
the two-mode approximation and the two wavefunctions
can be parameterized (in the center of mass frame) as
ψj(r; t) =

√
Nj(t)eiφj(t) Φ(r)e

i
�
pj(t)·z:

∫
dr|ψj |2 = Nj is

the number of particle of the condensate j, pj is the con-
densate momentum and Φ(r) the |2, 2〉 wavefunction at
t = 0, (the condensed |2〉 is in equilibrium wavefunction
before the application of the rf fields). The temporal evo-
lution of Φ(r) can be neglected for the reason before dis-
cussed. Substituting in the equations (1), the equations
of motion for the particle number Nj and its conjugate
momentum φj , are

I(t) = Ic(t)
√

1 − η2(t) sinφ(t)
∂

∂t
φ = −∆µ(φ, η)

(2)

with η = N2−N1
N2+N1

, Ic(t) = ΩR
∫

drΦ2(r)eip(t)z/�, p =
p1 − p2 and, in the far-detuned case, the chemical po-
tential difference ∆µ = µ1 − µ2 � δ. We remark that the
atomic current I = ∂

∂tη depends on the relative average
phase φ(t) = φ1(t) − φ2(t). In the strong-coupling limit
(δ � ΩR), the two-mode approximation breaks down, and
hence equations (2) cannot be retrieved.

Equations (2) are generalized Josephson equations,
similar to those governing a voltage-driven superconduct-
ing junction [16]. Here, however, the critical current Ic(t)
depends explicitly on time due to the dynamical phase,
e

i
�
p(t)z , accumulated by the two condensates. The spin

dynamics can be decoupled from the much slower spa-
tial dynamics so, to a good approximation, p � −mgt/2.
This gives a decreasing critical current Ic(t) ≈ ΩR e−t

2/Γ 2

with a relaxation time Γ � 130 µs. A further departure
from the standard Josephson current relation is given by
the term

√
1 − η2 [14], absent in superconducting systems

where η ≈ 0 [3] due to the presence of external circuits
which suppress charge imbalances. In Figure 1a the time
evolution of the fractional relative population observed ex-
perimentally is compared with the solution of the Joseph-
son equations (2).

Response of the thermal gas

In order to highlight the macroscopic quantum nature of
the condensate oscillations, we show that those of a non-
condensate (thermal) atomic cloud, driven by the same
external rf field, die out on a much shorter time scale. The
difference between the two relaxation times is a manifes-
tation of the BEC long-range order respect to the micro-
scopic coherence length of the non-condensate cloud. In-
deed, the relaxation of the condensate oscillation is purely
dynamical (due to the different trapping potentials felt by
the two Zeeman states), while the decay of the thermal
gas is mainly due to a strong dephasing.
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Fig. 2. a) Time evolution of the fractional relative popula-
tion of the two condensates, η = (N2 − N1)/(N2 + N1). The
experimental data (dots) are compared with the theoretical
prediction (solid line) as described in the text. N2 and N1 are,
respectively, the number of particles in the Zeeman states |F =
2, mF = 2〉 ≡ |2〉 and |F = 2, mF = 1〉 ≡ |1〉. The condensate
is initially created in the state |2〉 with typically ≈ 150, 000
atoms: a first π/2 pulse of 13 µs (ΩR = 2π×(26±2) kHz, δ = 0)
transfers half |2〉 population in the state |1〉. A second far-
detuned pulse (ΩR = 2π×(13±2) kHz, δ = 2π×(80±10) kHz)
is applied after 4.0 ± 0.1 µs. At the end of the second pulse
the trap is turned off, and the population of both condensates
is destructively measured with laser imaging techniques. The
frequency of the oscillations is ν = 88 kHz, and the relaxation
time is Γ � 130 µs. b) Time evolution of the fractional relative
population of the thermal clouds η = (N2 − N1)/(N2 + N1).
The temperature is T � 0.4 µK � 3Tc. Initially all thermal
atoms are in the state |2〉 level, forming a Gaussian cloud with
a width of 15 µm. As in Figure 1a, a first π/2 pulse transfers
half |2〉 population in the state |1〉. After this pulse, the second
far-detuned pulse is applied. The parameters of (and the time-
delay between) the two pulses are the same as in Figure 1a.
The theoretical frequency of the oscillations is ν = 88 kHz,
as for the condensate oscillations, while the relaxation time is
Γ � 15 µs, which has to be compared with the value (130 µs)
for the condensate.

In our experiment, a thermal atomic cloud is
initially trapped in the Zeeman level |2〉, at a tem-
perature T � 3 Tc. In first approximation, the gas
is very dilute and can be seen as a “swarm” of non-
interacting particles. After the first π/2 pulse, the
far-detuned rf field is applied, and the atomic pop-
ulation recorded. The oscillations die out in ∼40 µs
Figure 2b, which should be compared with the ∼200 µs
in which the condensate oscillations disappear. The
density matrix is ρ =

∑
α ρ

(α) =
∑

α |ψ(α)〉 〈ψ(α)|,
where α runs over the number of particles and 〈ψ(α)| =(∑

n a
(α)∗
n e−ip1z/�〈ϕn| ,

∑
m b

(α)∗
m e−ip2z/�〈ϕm|

)
, with

{|ϕn〉} a complete basis of H2 with eigenvalues εn.

The Liouville-von Neumann equation for the density
matrix gives the following equations for the a and b
amplitudes:

i�ȧ(α)
n � (εn +

�δ

2
)a(α)
n +

1
2

∑
m

�Ωnm(t)b(α)
m

i�ḃ(α)
n � (εn − �δ

2
)b(α)
n +

1
2

∑
m

�Ω∗
mn(t)a

(α)
m

(3)

(we neglected terms small in respect to �δ). The
transfer matrix elements are calculated as overlap in-
tegrals of the two-species wave-functions Ωnm(t) =
ΩR

∫
drϕn(r)ϕm(r)eip(t)z/� (where p = p1 − p2). The or-

thogonality of the wavefunctions is gradually lost so, after
a transient time, the diagonal and non-diagonal matrix
elements become comparable, allowing for an incoherent
exchange between states of different quantum numbers
and, therefore, leading to a strong dephasing of the ther-
mal oscillations. From our simulations Ωn,n ∼ Ωn,n±1 at
t ∼ 30 µs.

We observe that, if the two trapping potentials were
the same, all diagonal matrix elements in equations (3)
would be equal to Ωnn = ΩR, while the off-diagonal terms
would vanish (Ωnm = 0). Therefore the thermal cloud
would exhibit undamped Rabi oscillations [17], indistin-
guishable from the condensate Josephson oscillations. In
Figure 1b we show the time evolution of the relative pop-
ulation of the two thermal clouds, which is in fairly good
agreement with our predictions.

Before concluding we want to stress that in the strong-
coupling case (δ � ΩR), the dephasing times of conden-
sate and thermal gases are different mainly because they
have different dimensions [18]. Indeed |1〉 along the z-
axis feels the potential V1 = 1

2mω
2l2z2, but it is initially

in the center of the potential V2, i.e. in z0 ≈ 15 µm.
The gradient G of the magnetic potential in z0 is G =
V ′(z0)
2π�

= mω2l2

4π�
z0 ≈ 11 MHz/cm. The phase of condensate

|j〉 is now a function φj(z, t): in other words, the effective
Rabi frequency depends on the spatial coordinate z. At a
time τ of order 1/GL, (τ ≈ 220 µs with L ≈ 4 µm for
the condensate and τ ≈ 30 µs with L ≈ 30 µm for the
thermal cloud), the phases (and the local relative phase
φ = φ1 − φ2) are spatially oscillating functions. At the
same time τ ,

∫
dzφ(z, τ) ≈ 0 and there is not longer a

net transfer of particles. When the detuning δ is much
greater than the Rabi frequency ΩR (as in our experi-
ment), φ2,1(z, τ) ≈ ± δ

2 plus an oscillating function. Then∫
dzφ(z, τ) 
= 0 and there is a net transfer of particles.

Therefore, provided that the detuning is large enough,
the width L does not affect the dephasing time. Further-
more, the phases φ1,2 does not depend on z: the spatially-
dependent Rabi frequency is a weak perturbation of the
detuning δ, as it should in a weak link.

Conclusions

The theoretical and experimental results here reported al-
low us to conclude that: 1) the far-detuned rf field behaves
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like a superfluid weak link, 2) the current-phase dynam-
ics is governed by generalized Josephson equations, and 3)
the persistence of condensate oscillations for times much
longer than those of the thermal cloud yields a clear sig-
nature of the macroscopic quantum coherence in Bose-
Einstein condensates.

Our experimental setup would also enable one to study
the analogous of several phenomena present in supercon-
ducting and superfluid Josephson junctions [19], as well
as to address problems in the foundation of quantum me-
chanics, like the possibility to define a phase standard [20].
This might be investigated populating all the Zeeman
sublevels, thus creating an array of Josephson junctions,
whose relative phases can be properly manipulated by tun-
ing the external rf field.

Furthermore, the comparison between the condensate
and normal components of an atomic gas opens a new ex-
perimental way to testing theories of decoherence and de-
phasing mechanisms [10,21,22] by studying the Josephson
dynamics of a condensate embedded in a thermal bath.
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